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Motivation & Experiment design

Multi-scale subgraph detection with generalized Markov Stability

Approach of dynamic functional connection 

Change the order and shape of the 4 cues
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Reorganization:
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n=11 fields from 6 animals

Conclusion and discussion

Reorganization (recall) results at the subgraph level
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Figure.1 At the network level, a higher average 
clustering coefficient and global efficiency with 
exploring the novel environment. In fam*, these 
returned to the level of fam. 
In the novel environment, both the Chain motif and 
Reciprocal motif exhibited an increase, resulting in the 
emergence of homogeneous structures.
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Figure.3 During the reorganization process, we observe that the stable subgraph 
scales become coarser, indicating a reduction in the number of stable subgraphs in the 
Fam*. This effect appears to be a consequence of the previous perturbation. 
Furthermore, among ~1761 cells analyzed, a significant broadening of the firing rate 
map was discovered.

Distribution vectors  Unoptimized matrices

Ongoing  directions - Simulate neural dynamics of memory recall with perturbation
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Figure.5 As the scale of the subgraphs transitioned from coarse 
to fine granularity, both the intra-subgraph and inter-subgraph 
asymmetry exhibited an increase. Furthermore, the perturbation 
introduced by new memories led to a decrease in the asymmetry 
of connections within and between subgraphs, indicating a 
higher degree of homogenization in the functional networks.  
During the subsequent reorganization process, the asymmetry of 
connections within and between subgraphs was elevated in the 
fam* condition compared to the fam condition.

[1] Go, Mary Ann, et al. "Place cells in head-fixed mice navigating a floating real-world environment." Frontiers in cellular neuroscience 15 (2021): 618658. 
[2] Arnaudon, Alexis, et al. "Algorithm xxx: PyGenStability, a multiscale community detection with generalized Markov Stability." ACM TMS (2024). 
[3] Billeh, Yazan N., et al. "Revealing cell assemblies at multiple levels of granularity." Journal of neuroscience methods 236 (2014): 92-106

[4] Delamare, G., Tomé, D. F., & Clopath, C. (2024). Intrinsic neural excitability biases allocation and overlap of memory engrams. Journal of Neuroscience, 44(21). 
[5] Delvenne, J. C., Yaliraki, S. N., & Barahona, M. (2010). Stability of graph communities across time scales. PNAS, 107(29), 12755-12760. 
[6] Schneider, S., Lee, J. H., & Mathis, M. W. (2023). Learnable latent embeddings for joint behavioural and neural analysis. Nature, 617(7960), 360-368.

Figure.4 The perturbation process initially disrupted the previously stable global 
manifold. Further analysis of the manifolds corresponding to each neural sub-
population revealed that, compared to the Fam, the sub-population manifold spanned 
broader local field during the reorganization process in Fam*.

• The perturbation (new memory encoding) initially led to the homogenization of 
the CA1 network. 

• Population structure exhibits differences across spatial scales. 

• During the reorganization (recall) process, neurons extended their firing fields, 
resulting in a reduction in the number of functionally distinct subpopulations. 

• However, the asymmetry of the existing subpopulations was enhanced.

Initial result.  
Modeling networks of different environments 
by self-organizing processes.

Figure.7 To simulate perturbation, we 
designed receptive fields based on the graph 
structure we inferred . Initial findings suggest 
that when returning to the initial environment, 
greater inhibitory neuron weights are 
required to maintain stable neural dynamics.

Figure.6 By conducting rest simulations at 
different time scales, we aim to observe the 
impact of the consolidation process duration 
following perturbation on the reorganization 
during recall.
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Question: How does learning a new memory reorganize the functional 
network topology of an old memory in hippocampal area CA1?
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Figure.2 At certain time scales that exhibit considerable stability, our method 
demonstrates the capability to detect highly reliable subgraphs. These subgraphs 
effectively capture neurons that possess similar firing fields.


